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Abstract 

Models for cognitive diagnosis have been developed as an attempt to provide more than a single 

test score from item response data. Most approaches are based on a hypothesis that relates items 

to underlying skills. This relation takes the form of a design matrix that specifies for each 

cognitive item which skills are required to solve the item and which are not. This report outlines 

one direction that developments of cognitive diagnosis models is taking. It does not claim 

completeness, but describes a line of models that can be traced back to Tatsuoka’s seminal work 

on the rule space methodology and that finds its current form in models that combine features of 

confirmatory latent factor analysis, multiple classification latent class models, and 

multidimensional item response models. 

Key words: Cognitive diagnosis, skill profiles, multiple classification latent class models, item 

response models, general diagnostic model 
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Models for Cognitive Diagnosis 

The selection of models for cognitive diagnosis discussed here has been developed in an 

attempt to solve the diagnostic dilemma of both the classical and the probabilistic approaches to 

educational and psychological testing. Most models used for reporting student outcomes were 

originally developed to allow student behavior to be described using a single variable. 

Achievement, knowledge, and aptitude were thought of as essentially unidimensional, so a single 

number was deemed sufficient to describe them. This approach works when the purpose of the 

testing is to compare and eventually select students using a single criterion. This unidimensional 

view sees tests as tools to assign scores to certain fixed levels of achievement, rather than as 

tools to assess the current state in a process in which students are acquiring skills or knowledge.  

Models for cognitive diagnosis are based on a different assumption, namely that observed 

differences in student performance on a set of tasks, even if correlated across tasks, are best 

described by more than one student attribute or skill, and that a multivariate profile is necessary 

to describe differences among examinees. This view sees tests as tools for better understanding 

and evaluating areas where there is potential for improvement. Over the years, different 

approaches have been taken to formalize these different sets of assumptions:  

The most common models of modern test theory for the univariate student model are 

item response theory (IRT; Lord & Novick, 1968) and the Rasch model (RM; Rasch, 1960). 

These models are being used operationally in many K-12 testing programs, as well as in large-

scale educational survey assessments that report on representative samples of student populations 

in different grades, states, or even countries (von Davier, Sinharay, Oranje, & Beaton, 2006). 

Describing student behavior on a set of cognitive tasks assuming multiple discrete skills 

or attributes has been an active area of research for quite some time. The rule space methodology 

(Tatsuoka, 1983) and latent class models with multivariate latent spaces (Haberman, 1979; 

Haertel, 1989; Maris; 1999) are the most well-known early attempts at diagnostic modeling. 

More recent approaches are the unified model (DiBello, Stout, & Roussos, 1995) and the 

reparameterized unified model (RUM), also referred to as the fusion model, (Hartz, Roussos & 

Stout, 2002), as well as approaches that involve Bayesian networks. Recently, a class of models 

referred to as the general diagnostic model (GDM; von Davier & Yamamoto, 2004a, 2004b; von 

Davier, 2005) has been developed. It has been shown that this class of models contains many of 

the previous approaches, in addition to some common IRT models as special cases. 
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Most diagnostic models assume a multivariate but discrete latent variable which 

represents the absence or presence of multiple skills or attributes. These skill profiles have to be 

inferred through model assumptions with respect to how the observed data of an examinee relate 

back to the unobserved skill profile. The absence or presence of skills is commonly represented 

by a Bernoulli (0/1) random variable in the model. Given that the number of skills represented in 

the model is larger than in unidimensional models (obviously greater than 2, but smaller than, 

say, 14 skills in most cases), the latent distribution of skill profiles needs some specification of 

how to model the relationship between skills in order to avoid the estimation of up to 214-1 = 

16,383 separate skill pattern probabilities. The GDM (von Davier, 2005) allows ordinal skill 

levels and different forms of skill dependencies to be specified so that more gradual differences 

between examinees can be modeled in this framework. 

Rule Space Methodology 

Rule space refers to a two-dimensional representation of an unidimensional ability and a 

deviation from a model based on the unidimensional ability variable. More specifically, the rule 

space methodology uses ability estimates from IRT and discrepancy scores from person-fit 

measures to span a two-dimensional space of ability and deviation from the IRT model. Assume 

there are 1,..., Ix x  observed dichotomous (0/1) responses to I items or tasks for each of N 

examinees in a sample. For the IRT model used in rule space, we may assume that the 

probability of observed response vector ( )1 ,...,n Inx x  for examinee n is given by  

( )1
1

,..., ( , )
I

n In in n i
i

P x x P x θ β
=

=∏  (1) 

with item responses following the 3PL model, that is, 

( ) [ ]
11 , ( , , ) (1 )

1 exp ( )
P x a b c c c

a b
θ β

θ
= = = + −

+ − −
. 

The ability estimate θ  of an examinee is the value that maximizes Equation 1 given item 

parameters β  and depends on the responses ( )1 ,...,n Inx x .  

Person-fit measures are used to identify examinees who exhibit unexpected response 

patterns, that is, response patterns with a low probability under the assumed model (see von 
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Davier & Molenaar, 2003). One person-fit measure that may be used in the rule space 

methodology is defined as 

.

.

cov( , )1
cov( , )

ni i
n s

gi i

x x
x x

ξ = −  (2) 

where the covariances are defined across items and are computed based on the covariance 

between item responses of examinee n and the column sum (item sum) of success for the 

numerator. For the denominator, the covariance (across items) of the Guttman pattern for a given 

sum score s and these column sums are computed. This defines a measure of person fit that is 

independent of the overall ability estimate θ  ( Tatsuoka, 1983) and indicates how deviant a 

specific response pattern is from the ideal (Guttmann) pattern for the given examinee. 

Using θ  and ξ  for each observed response pattern allows a two-dimensional scatter plot 

of the examinees to be created. This first building block is complemented with an expert 

generated matrix that relates items to the skills required to solve those items. This matrix is 

referred to as the Q-matrix. The Q-matrix contains zeros and ones. The nonzero entries relate the 

cognitive tasks (items) to a set of skills that is assumed to drive student responses on these tasks. 

If an examinee has all the skills required to complete a particular task, his or her probability of 

success on this task should be high. If, however, an examinee lacks certain skills required to 

complete a particular task, the success expectation should be low for that task.  

Table 1 gives an example of such a Q-matrix for two examinees (examinee y and 

examinee z) and their respective skill sets. Assume that for a given math assessment, skills to 

add, subtract, and multiply are required, denoted by Add., Sub, and Mult in the table. If an 

examinee has all the skills required to complete a particular test item, the probability that the 

examinee will solve the item is high. As shown in Table 1, examinee y lacks skills Add and Sub., 

but interestingly has the skill to carry out multiplications. This implies that the probability of 

success for student y reaches its maximum only for item F, since this is the one item that requires 

the Mult. skill only, and no additional skills. In contrast, Table 1 indicates that examinee z will 

solve all items A to F with comparably high probability, since he or she possesses all three skills 

required by this set of items.  

The implied rule when converting a Q-matrix and a skill pattern to a set of expected 

responses is: the more required skills present, the higher the probability of success. This assists 
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in determining the most probable responses for each set of skills. For examinee y in the example 

one may argue that (A = 0, B = 0, C = 0, D = 0, E = 0, F = 1, G = 0) is the most plausible vector 

of responses if the presence of all required skills is necessary to solve a specific task. This view 

would represent a noncompensatory approach underlying the way in which skills are expressed 

or translated into success rates. A somewhat more forgiving view could be that an examinee may 

either show the above pattern of responses or produce at least one other response pattern, namely 

(A = 0, B = 1, C = 0, D = 0, E = 1, F = 1, G = 1), since at least a fraction of the required skills are 

present. This represents a compensatory assumption of how skill presence is expressed in higher 

or lower probabilities of succeeding in tasks. For examinee z, however, all required skills are 

present, so the typical response from this examinee should be (A = 1, B = 1, C = 1, D = 1, E = 1, 

F = 1, G = 1). 

Table 1 

Fictitious Q-Matrix for Six Items, Three Skills, and Two Examinees y and z With Different 

Skill Sets 

 Q-matrix: task by skill Examinee y Examinee z 

Skill Add. Sub. Mult. Add. Sub. Mult. Add. Sub. Mult. 

Task    no no yes yes yes yes 

A 1   -   +   

B 1  1 -  + +  + 

C 1 1  - -  + +  

D  1   -   +  

E  1 1  - +  + + 

F   1   +   + 

G I I I - - + + + + 

Note. Add, =addition; Sub, = subtraction; Mult = multiplication. 

In this example, there are eight different skill profiles, since all three skills can be either 

absent or present. These eight profiles correspond to eight typical response patterns as illustrated 

above. Table 2 illustrates these ideal (or perhaps, most typical) response patterns of the eight 

different skill profiles, assuming a noncompensatory model. 
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Table 2 

Three Skills and Their Associated Typical Response Patterns Under Noncompensatory 

Assumptions for The Example Q-matrix From Table 1 

 Skills Tasks 

S Add. Sub. Mult. A B C D E F 

000 no no no 0 0 0 0 0 0 

100 yes no no 1 0 0 0 0 0 

010 no yes no 0 0 0 1 0 0 

110 yes yes no 1 0 1 1 0 0 

y no no yes 0 0 0 0 0 1 

101 yes no yes 1 1 0 0 0 1 

011 no yes yes 0 0 0 1 1 1 

z yes yes yes 1 1 1 1 1 1 

Note. Add. =addition; Sub. = subtraction; Mult. = multiplication. 

The typical item response patterns contain a 1 whenever all required skills in the Q-

matrix are present in the skill profile. The above eight response patterns are used in the rule 

space methodology to define the centroids of clusters of examinees that are close to these 

patterns (and finally, assumed to belong to the associated skill profile group).  

More explicitly, each expected item response pattern has a corresponding value on the 

skill profile. In addition, each expected response pattern, for example 110 (1,0,1,1,0,0)x = , also 

corresponds to a specific point in the ability-by-item fit plane, that is, in the example S=110, 

there is a ( )110
,θ ξ  that represents the skill pattern 110 (Add. = yes, Sub. = yes, Mult. = no) in the 

space spanned by ability and item fit measure, θ  andξ .  

In our example, the rule space methodology would determine these (eight) points, 

( )000
,θ ξ  to ( )111

,θ ξ , which are the centroid points corresponding to typical responses of 

different skill patterns in the ability-by-person fit space. Then, the rule space method would 

classify each examinee in the sample, based on his or her observed item response pattern, 

1 6( ,..., )x x x=  into one of the clusters defined by these (eight) centroids. The building blocks of 

the two-dimensional space used in rule space are IRT and person-fit measures. Alternately, rule 
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space assumes that items are solved using multiple skills, which are required to a different extent 

in different items. This implies the bringing together of a unidimensional IRT model with the use 

of multiple skills to solve the items. One issue is the connection between response pattern, 

underlying ability, and skill pattern, and how these three parts can be combined with 

classification rules that use the ability estimate and a person-fit measure. This classification can 

be done using different deterministic or probabilistic classifiers or rules, depending on the 

preference of the user of the methodology.  

The questions to be answered are: If deterministic classifiers are chosen, what happens if 

some response patterns do not have very pronounced proximity to a unique skill pattern? Which 

measure of proximity to a centroid is used to classify observations? If probabilistic 

classifications are used, what density or model is assumed to calculate the probability of an 

examinee being a member of a skill-pattern class or cluster given an observed response pattern?  

Subsequently developed models for cognitive diagnosis embed the skill-by-item Q-

matrix more directly into the model structure, instead of resolving the duality of skills and IRT-

based ability estimates in the classification phase. The models described in the following sections 

start out with probabilities explicitly modeled based on multiple skills and an expert-generated 

Q-matrix, or they provide means to incorporate multiple latent dichotomies, which may be 

viewed as multiple mastery/nonmastery groups.  

Multiple Classification Latent Class Models 

Latent class analysis (LCA) assumes a categorical latent variable that explains the 

observed relationships between examinees’ item responses. The defining properties of LCA are 

local independence given latent class, the assumption of an exhaustive and disjunctive latent 

classification variable, and distinctness of conditional probabilities across classes. Why is that a 

useful approach to cognitive diagnosis modeling?  

The local independence assumption ensures that, given latent class, the observed 

variables (responses to cognitive tasks or items) are independent. This means that examinees 

belonging to the same latent class differ from the ideal class profile in their responses only 

randomly; they do not show any further systematic variation in their item responses. 

The assumption of the latent classes being disjunctive and exhaustive ensures that each 

examinee is a member of exactly one latent class. This means that each examinee, given 
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sufficient item response information, can be classified into one of the latent classes with high 

probability if the model holds.  

Latent classes differ with respect to the profile of response probabilities across items. It is 

assumed that each class is defined by a unique set of probabilities that, in many ways, defines the 

particular class. 

The model equation, which represents the formal structure that corresponds to these 

assumptions, is 

1
1 1

( ,..., ) ( , )
IC

I c i
c i

P x x P X x c iπ
= =

= =∑ ∏ , (3) 

where the cπ  are the relative class sizes, and the ( , )iP X x c i=  are conditional probabilities of a 

response x on item i in class c. If the classification variable is latent; that is, the membership of 

the examinees is unobserved, the conditional probabilities and the relative sizes of the classes 

have to be estimated from the data. 

One may view the LCA, even in this unrestricted form, as a model for cognitive 

diagnosis. If all parameters are freely estimated, the LCA is an exploratory model. In this form 

the model can provide useful insight into how observed responses may be represented as being 

based on an unobserved mixture of different (cognitive) types or classes of individuals. If there 

are hypotheses about specific expected profiles that correspond to different cognitive styles or 

classes, however, LCA can be used to analyze data and directly incorporate these hypotheses into 

the conditional probabilities. Haertel (1989) and Maris (1999) provide a formal introduction and 

examples of how to execute such an analysis using LCA. 

Instead of paraphrasing Haertel’s and Maris’s work, we will introduce the way to find 

parameter constraints for LCA that relate closely to the rule space methodology. Methods to 

implement constrained latent class analysis can be used to develop a method to directly 

incorporate assumptions about skill expression and an expert-generated Q-matrix into the 

conditional probabilities of LCA. Table 3 provides an example of how to specify latent class 

probabilities for the two examinees from the example in the previous section. 

The conditional probabilities are constituted to be equal for all items through skill-pattern 

combinations where the number of present skills and the number of required skills coincide. As 

an example, if a person with a specific skill pattern has both of two required skills, his or her 
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conditional probability will be P(2/2); if a person has only one of two required skills, his or her 

conditional probability will be P(1/2) for all the items for which this ratio holds. Recall the rule 

space example where it was argued that examinee y has the highest probability for item F since 

this examinee has the Mult. skill, which is the only one required for that item. 

Table 3 

Fictitious Conditional Success Probabilities to Incorporate the Q-matrix Assumptions and 

Assumed Skill Patterns Into a LCA Type Analysis 

 Q-matrix: task by skill 

Task Add. Sub. Mult. y = 001 z = 111 

A 1   P(0/1) P(1/1) 

B 1  1 P(1/2) P(2/2) 

C 1 1  P(0/2) P(2/2) 

D  1  P(0/1) P(1/1) 

E  1 1 P(1/2) P(2/2) 

F   1 P(1/1) P(1/1) 

G 1  1 P(1/2) P(2/2) 

Note. Add., =addition; Sub., = subtraction; Mult. = multiplication. 

The above approach generates a vector of conditional probabilities for all skill patterns 

(000 to 111 in our example). The corresponding restricted LCA model for cognitive diagnosis 

contains 38 2=  latent classes for the example with three dichotomous skill variables, but instead 

of 8x7=56 conditional probabilities, only five different probabilities, P(0/1), P(1/1), P(0/2), 

P(1/2), and P(2/2), have to be estimated.  

The uniqueness of the class-specific profiles is one of the issues that should be monitored 

when using a restrictive latent class model. Each class (read: skill pattern) profile of conditional 

probabilities consists only of these probabilities, so skill patterns that are similar in certain ways 

may produce very similar patterns of conditional probabilities (read: class profiles). The 

restrictions of this model are, simultaneously, a source of strength when using this 

parameterization suggested by Yamamoto (1992). If the number of skills is large compared to 

the number of items, very large numbers of parameters have to be estimated based on a moderate 

set of item responses per examinee. In the restricted cognitive diagnosis LCA, this potentially 
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huge number of parameters is cut down to very few levels of conditional probabilities. The 

number of probability levels to be estimated depends on the maximum number of skills required 

per item. In addition, the number of latent class sizes is determined by the number of skill levels 

to the number of skills; in our example this is 38 2= . This number increases exponentially with 

the number of skills involved; for example, when using 10 skills, the number of possible skill 

patterns increases to 1,024.1  

Reparameterized Unified Model 

This section presents a brief description of the reparameterized unified or fusion model 

(adapted from DiBello & Stout, 2003). In addition, we present two ways to parameterize the 

fusion model to allow estimation with partial credit items and with skills that contain an arbitrary 

finite number of ordered levels. 

Probabilistic Unified Model—Dichotomous Items and Skills Case 

The unified model was developed as a probabilistic item model to express the stochastic 

relationship between item response and status of underlying skills (DiBello, Stout, & Roussos, 

1995). A thorough discussion of the model is beyond the scope of this paper, but we present just 

enough to give an idea of the modeling so it can be compared to other models presented in this 

chapter. 

As a starting point we assume an underlying conjunctive latent response model as 

employed within the rule space method (Tatsuoka, 1985, 1990, 1995) and later within the latent 

response models of Maris (1999). We then select a moderately sized set of skills that are 

important to the client and that we believe are able to be well measured by a test. Settling on an 

appropriate list of skills at the right level of granularity is a critically important step (VanEssen, 

2001). The primary assumption that underlies the fusion model is conjunctive; sufficient 

proficiency in all of the indicated skills is required to successfully answer the item. 

A student’s proficiency is modeled as an unobservable profile of skill level 1( ,..., )Kα α α= . 

Here, 1kα =  means that skill k is mastered and 0kα =  means that skill k is not mastered. The 

relationship between item response and skill is modeled as conjunctive (noisy AND model in the 

sense of Junker and Sijtsma, 2001) in that an item is considered to involve a certain subset of k 

skills, and an imaginary deterministic response to that item for that student would be correct if, 

and only if, the student has mastered all the skills required by that item. If one or more of those 
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required skills is not mastered, the deterministic response would be incorrect. To derive the 

unified model, we begin with a latent variable characterization of the cognitive assumptions 

underlying the unified model. The item response Xi = 0/1 is expressed as 

,
,

1
( ) (1 )i k

K q
i i i i ii k

k
X S Y B S C

=

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= + −∏  

where Si, Yi,k, Bi, and Ci are dichotomous variables with values 0/1 considered to be latent 

response variables in the sense of Maris (1999) with the following definitions: 

Si= examinee chooses the Q strategy for item i (1=yes; 0=no); 

Yi,k= skill k is applied correctly to item i (1=yes; 0=no); 

Bi= other knowledge or skills not included in Q are performed correctly for item i 

(1=yes; 0=no); 

Ci= given that a different strategy is used for item i, that strategy is used correctly (1 = 

yes; 0 = no). 

It is not claimed that students behave deterministically, or that they go through these 

various stages in a conscious or orderly fashion. This latent response model only provides a 

convenient way to list cognitive aspects that govern response performance by students on items 

or tasks. The point of this characterization is twofold: first, the model focuses in greatest detail 

on the particular skills listed in the Q-matrix; second, there are other things going on outside the 

Q-matrix that may be important enough to attend to.  

Consequently, the fusion model includes a probabilistic element to represent stochastic 

variation from the deterministic response. A student’s observed response is thought of as a noisy 

version of the deterministic latent response. The most general form of the unified model 

identifies four specific factors to explain the divergence of observed from latent response on an 

item. 

Strategy. For each item the Q-matrix presumes a predominant solution strategy and 

specifies a particular set of skills that are required by that strategy for successfully answering the 

item. In general, other strategies requiring different sets of skills may be available to solve this 

problem, and the student may choose, consciously or not, to employ a strategy different from that 
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embodied in the Q-matrix. We introduce parameter id = probability across the population that the 

Q strategy is selected for item i. 

Completeness. The Q-matrix represents a manageable set of skills available to be coded 

as required for individual items. For various reasons, we may decide to leave out of the Q-matrix 

some skills that are important for a particular item. For example, Samejima (1995) suggested 

leaving out higher order thinking skills from the Q-matrix, since these are difficult to discretize. 

Obviously, skills of too fine granularity (i.e., skills that are only required by very few items) 

should be left out or combined into super-skills to allow reliable identification of 

mastery/nonmastery of these fewer skills. In some situations the skill set represented in the Q-

matrix does not completely represent everything necessary for successfully answering an item. In 

those cases the Q-matrix is incomplete for that item. For a given item i, a parameter ic  is used as 

an index of the extent to which the Q-matrix is complete for that item. We introduce a 

continuous student ability parameter η to represent overall ability outside the skills modeled in 

the Q-matrix. In contrast to the detailed modeling of the skills listed in the Q-matrix, abilities 

outside the Q-matrix are modeled as simply as possible. We do not intend to imply that the non-

Q abilities are less important, but we consciously focus on the cognitive aspects that are modeled 

more explicitly in the Q-matrix. The non-Q abilities are crudely lumped together and modeled by 

a continuous variable η. Often, η is assumed to be unidimensional, and it acts as a variable that 

collects variation outside that explained by the skills listed in Q.  

Positivity. A person may be a master of skill k and yet apply the skill incorrectly to item i. 

For example, a specific instance of a skill within an item is particularly challenging so that even 

masters of the skill may occasionally misapply it in that particular item. Conversely, a nonmaster 

of skill k may correctly apply the skill to a particular item because the item instance is easy. For 

example, a nonmaster of a fractions skill may be able to correctly handle very simple fractions 

(such as ½) in a problem coded as requiring fractions knowledge, because the student knows 

enough about fractions to handle ½ correctly, even if his or her overall fractions proficiency is 

not high enough to render the student a master of that fractions skill. Modeling this formally 

requires two parameters for each item-skill pair. 

,i kπ  = P(apply skill k correctly in item i|skill k is mastered) 
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,i kr  = P(apply skill k correctly in item i|skill k is not mastered) 

Slips. Given that everything else has been done correctly, a response that should have 

been correct may be recorded incorrectly. We call this a slip and introduce the slip parameter p = 

probability of committing a slip.  

The unified model assigns parameters for each of these factors and provides a parametric 

expression for the probability of a correct response to an item, given a student’s 

mastery/nonmastery skill pattern. 

, ,

1

(1 )
, ,

1

( 1| ( ,..., ), )

(1 ) ( ) ( ) ( ) (1 ) ( )i k k i k k
i i

i K

K
q q

i c ii k i k b
k

P X

p d r P d Pα α

α α α η

π η η−

=

⎧ ⎫⎡ ⎤⎪ ⎪
⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

= = =

− + −∏
 

Here η  = continuous ability outside of the Q skills. 

1( ) (1 exp( 1.7( ))bP bη η= + − −  = one parameter logistic with a=1 and 1.7 present. 

ib  = “difficulty” parameter for non-Q strategy. 

0 3ic≤ ≤  is the item completeness index.  

ci ≈ 0 implies that other (unspecified) skills are important for answering item i correctly. 

ci ≈ 3 implies that the specified attributes in Q suffice to explain examinee response to i. 

In moving from the latent response model to this item model, several conditional independence 

assumptions are made. For further details see DiBello, Stout, and Roussos (1995) and Hartz 

(2002). 

Features of the Unified Model 

The unified model has several important characteristics. Rather than continuous IRT θ, 

the latent space now is a mixed discrete-continuous ( , )α η  variable. The skill profile vector 

1( ,..., )Kα α α=  represents mastery or nonmastery for each of the skills being diagnosed by the test. 

The continuous parameter η represents ability outside the skills listed in the Q-matrix. The four 

aspects of the model — strategy, completeness, positivity, and slips — are designed to capture 

more of the reality of the examinee response process where the underlying conjunctive cognitive 
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model seems reasonable. Such a model should be more close to reality and lead to more accurate 

and valid diagnoses.  

One may argue that the model is still far too simple, that it is not consistent with dynamic 

aspects of cognition, and that it does not express the rich interplay between item characteristics 

and cognitive functioning. All of these arguments are correct, but the unified model is tractable. 

Statistical approaches inherently cannot deal with the full complexities of cognitive processing in 

response to assessment tasks. We believe the unified model may be useful for formative 

assessments. 

Fusion Model 

The original unified model lacked a practical calibration method, and the ,i kπ s and ,i kr s 

were nonidentifiable. In her PhD thesis, Hartz (2002) reparameterized the model, cast it into a 

hierarchical Bayesian framework, and programmed a Markov chain Monte Carlo (MCMC) 

parameter estimation procedure called Arpeggio. Hartz chose a particularly intuitive and useful 

reparameterization: 

,
1

* ( ) ik

K
q

i i k
k

π π
=

=∏  and ,
,

,

* i k
i k

i k

r
r

π
= .  

These Ki+1 *-parameters are statistically identifiable given that sufficient information is 

available from the item-response data matrix.  

The *-parameters also lend themselves to interpretation by nontechnical test users and 

test developers: 

*iπ  can be thought of as a conditional item difficulty parameter, conditional on having 

mastered all the skills required by an item; 

,
,

,

* i k
i k

i k

r
r

π
=  is a certain weight of evidence and measures the inverse information strength 

of skill k within item i. If ,*i kr  is low, near 0.0, the penalty to probability of correct item 

response for nonmastery of skill k is high. If ,*i kr  is high, near 1.0, the penalty is low.  

Once a test is calibrated, provided model-data fit is high, the values ,*i kr  quantify how 

well skill k is tapped by item i. Reliability of classification of skill k by the test as a whole 
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depends on the item parameters and correlations among the skills. The fusion model provides a 

psychometrically sound method to empirically support expert-judgment-based standards or 

alignments of skills to items. Employing Hartz’s reparameterization gives the RUM 

, (1 )* *
1 , 0

1

( 1| ( ,..., ), ) ( ) ( )i k k
K

q
i K i i k i

k

P X r P cαα α α η π η−

=

⎡ ⎤
= = = +⎢ ⎥

⎣ ⎦
∏  

The term fusion model refers to the RUM cast in a hierarchical Bayesian framework (see Hartz, 

2002; Stout & Hartz, 2004). 

Using the Fusion Model with Partial Credit Items 

Suppose item i has ordered scores 0,1,...,i iX M=  where iM  is the maximum possible score 

and 1iM +  is the number of possible score levels. A straightforward way to use the fusion model 

for partial credit scored items is as follows (see Bolt & Fu, 2004): 

,

,

*
(1 )1 * *

, , ,
1

1 0
( , ) ( | ( ,..., ), )

( ) ( ) 1, 2,..i k k

i m

K
qim i K

i m i k m c i
k

m
P P X m

r P m Mαα η α α α η
π η−

=

=⎧
⎪= ≥ = = ⎡ ⎤⎨ =⎢ ⎥⎪⎣ ⎦⎩

∏
. 

From this we define item score probabilities as follows: 

* *
, , 1

, 1 *
,

( , ) ( , ) 0,..., 1
( , ) ( | ( ,..., ), )

( , )
i

i m i m i
i m i K

i M i

P P m M
P P X m

P m M
α η α η

α η α α α η
α η

+⎧ − = −⎪= = = = ⎨ =⎪⎩
. 

Where *
,i mπ  is the probability of applying skill k well enough in item i to achieve an item score of 

at least m given all required skills are mastered ( * * *
,1 ,2 ,...

ii i i Mπ π π≥ ≥ ≥ )and *
, ,i k mr  is the ratio of two 

probabilities: 1) the probability of applying skill k in item i well enough to achieve an item score 

of at least m given the examinee is a nonmaster of skill k, and 2) the probability of applying skill 

k in item i well enough to achieve an item score of at least m given the examinee is a master of 

skill k ( * * *
,1 ,2 ,...

ii i i Mr r r≥ ≥ ≥ ) and 
,

( )
i mcP η  is a one parameter logistic function with completeness 

parameter ,i mc , that represents the probability of performing all non-Q knowledge well enough to 

achieve item score of at least m ( ,1 ,2 ,...
ii i i Mc c c> > > ). 
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In the case of a dichotomous item score ( 1iM = ) this reduces to the dichotomous fusion 

model. In fact, as Bolt and Fu (2004) point out, this representation amounts to assuming a 

dichotomous fusion model for each possible dichotomization of the partial credit item scores  

0,1,...,i iX M= . 

The number of parameters for this version of the fusion model is quite high. In general, the 

number of parameters for an item with maximum score iM  that requires iK  skills is 

( 2)i iM K + . 

Bolt and Fu propose an alternate parameterization that reduces the total number of parameters by 

imposing constraints on the item parameters. The reduced parameterization is seen most easily in 

the case of a dichotomous item that requires only one skill k. For convenience we suppress the 

subscript k. Imagine an underlying normal propensity variable it  that represents the propensity 

for applying all required skills correctly in this item (in this example, there is only one skill 

required).  

Then we consider the probability of correctly applying all skills (in this case one skill) 

correctly in the item to be represented by the area under the standard normal curve to the right of 

a threshold value ,1iτ . 

Next, imagine the item is partial credit with maximum score iM . We can consider the 

same underlying normal propensity variable it . The application of all the required skills (in this 

case the one skill k) well enough to achieve item score iX m≥  for each score level m is 

represented by iM  thresholds on the standard normal curve ,1 ,2 ,...
ii i i Mτ τ τ≤ ≤ ≤ .  

Next, consider a partial credit item with maximum score 2iM =  that requires three skills 

1,2,3k = . Now instead of one, we consider four (K+1) underlying normal propensity variates: 

,1 ,2 ,3 ,4, , ,i i i it t t t . Each of these normal distributions represents a different conditional underlying 

propensity for applying all three required skills correctly in the item. The four curves are 

conditional on the four attribute states: (111), (011), (101), and (110).  
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Bolt and Fu (2004) make the simplified assumption that each of these normal curves has 

the same variance 1.0, and the curves differ only with respect to the location of the mean. The 

first curve (111) is located at mean 0.0, and the next three curves at the following means: 

,011 ,1i iμ μ= , ,101 ,2i iμ μ= , ,110 ,3i iμ μ= . These curves are thought of as existing all on the same 

underlying scale, and the means are constrained to be located to the left of 0.0.  

If we scale each of these four underlying propensities to lie on the same scale, then the 

thresholds ,1 ,2 ,...
ii i i Mτ τ τ≤ ≤ ≤  are the same for all four curves. Thus, we represent the 2iM =  

item score levels by locating 2iM =  thresholds ,1 ,2i iτ τ≤  and think of these thresholds as holding 

for all four normal curves. The conditional probability that all three required skills are performed 

well enough to score at least item score m, conditional on one of the four skill patterns (111, 011, 

101, or 110), is represented by the area under the relevant curve (111, 011, 101, or 110) to the 

right of the threshold ,i mτ . 

It is easy to see that the parameters *
,i mπ  and *

, ,i k mr  can be defined in terms of the 

parameters ,i kμ  and ,i mτ . An MCMC estimation program has been developed and evaluated for 

estimating the ,i kμ  and ,i mτ  (Bolt & Fu, 2004).  

The advantage of this parameterization is a significant reduction in the number of 

parameters. Instead of ( 1)i iM K +  parameters *
,i mπ  and *

, ,i k mr , the new parameterization requires 

only i iM K+  parameters ,i kμ  and ,i mτ  parameters. It should be noted that the ,i kμ  and ,i mτ  

parameterization is not equivalent to the original *
,i mπ  and *

, ,i k mr  parameterization. Making the 

variances of the K+1 curves equal is a restrictive assumption. The parameters *
,i mπ  and *

, ,i k mr  can 

be derived from the parameters ,i kμ  and ,i mτ . The converse requires constraints on the *
,i mπ  and 

*
, ,i k mr . Bolt and Fu (2004) argue that the constraints are reasonable for educational testing 

applications. For further details, see Bolt and Fu. 

Extension of the Fusion Model to Ordered Skill Levels 

Templin (2004) extended the fusion model to the case in which each skill k can have an 

arbitrary number of ordered levels: 0,1,...,k klα = . Here we describe only the case of 

dichotomous items with polytomous skills. This can be combined with the Bolt-Fu partial credit 
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approach above, which has been done, and both real and simulated data studies have been 

performed (Templin, 2004; Templin, Roussos, & Stout, 2004 ). 

Consider a dichotomous item i that requires a number of skills k=1,2,3. Each skill has an 

arbitrary number of levels 0,1,...,k klα = . The ordered, polytomous fusion model is defined by 

Templin as 

, ,( , )* *
1 ,

1

( 1| ( ,..., ), ) ( ) ( )i k k i k

i

K
f q

i K i i k c
k

P X r Pαα α α η π η
=

⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
∏ . 

Here the linking functions , ,( , )i k k i kf qα  satisfy the following constraints: 

1.   , ,( 0, 1) 1i k k i kf qα = = =  

2.   , ,( , 1) 0i k k i i kf l qα = = =  

3.   , , , ,( , 1) ( 1, 1)i k k i k i k k i kf m q f m qα α= = > = + =  for m=0,1,2, l-1. 

Templin (2004) developed MCMC software to calibrate this model and has performed several 

research studies of real test data as well as parameter recovery studies with simulated data. 

Templin notes that the ordered polytomous fusion model is equivalent to replacing the single 

polytomous skill 0,1,...,k klα =  with kl  dichotomous subskills obeying an order constraint. For 

example we can define 

_1
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These new dichotomous subattributes, by definition, satisfy the following order constraint: 

_1 _ 2 _...
ik k k lα α α≤ ≤ ≤ . In other words, the only allowable combinations of these subattributes are 

the Guttman patterns: _1 _ 2 _( , ,..., ) (000...00), (000...01),..., (011...11), (111...11)
ik k k lα α α = . 

It can easily be shown that the normal fusion model parameterization applied to these 

subattributes with the enforced order constraint given above is equivalent to the original 

parameterization of the ordered polytomous fusion model (op. cit.). 

The General Diagnostic Model 

This section introduces a GDM (von Davier, 2005; von Davier & Yamamoto, 2004a, 

2004b) for dichotomous and polytomous data and ordinal skill levels. The class of diagnostic 

models is defined by a discrete, multidimensional, latent variable θ , that is, 1( )Ka …aθ = ,  with 

discrete user-defined skill levels 1{ }
kk k kl kLa s … s … s∈ , , , , .  

In the simplest (and most common) case the skills are dichotomous, that is, the skills will 

take on only two values {0 1}ka ∈ , . In this case, the skill levels are interpreted as mastery (1)  

versus nonmastery (0)  of skill k . Let 1( )Ka aθ = ,..,  be a K -dimensional skill profile consisting 

of K  polytomous skill levels 1ka k K, = ,.., . Then define the item-specific logits as  

1

( )
log ( )

( 0 )

K
i i i

xi xik i ik k
ki i i

P X x q a
h q a

P X q a
β γ

β γ
β γ =

⎡ ⎤= , , ,
= + ,⎢ ⎥= , , ,⎣ ⎦

∑  (4) 

with Q-matrix entries {0 1 2 }ikq …=∈ , , ,  and slope parameter 1( ) K
xi xi xiK Rγ γ γ= ,.., ∈ . The Q-

matrix entries ikq  relate item i  to skill k  and determine whether or not (and to what extent) skill 

k  is required for item i . If skill k  is required for item i , then 0ikq > ,  if skill k  is not required, 

then 0ikq = .  

These ( )i ik kh q a R,  are central building blocks of the GDM. The function ih  maps the 

skill levels ka  and Q-matrix entries ikq  to the real numbers. In most cases the same mapping will 

be adopted for all items, so we may drop the index i . The h  mapping defines how the Q-matrix 

entries and the skill levels interact (See the examples in the next subsection.). 
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Examples of Skill by Q-Matrix Interactions 

One example for a mapping ()ih relates the GDM to discrete multidimensional item 

response theory (MIRT) models. The choice of h  for IRT type models is  

( )i ik k ik kh q a q a, =  (5) 

which, for {0 1}q∈ , , equals 

1
( )

0 0
k ik

i ik k
ik

a for q
h q a

for q
=⎧

, = .⎨ =⎩
 

In this case, only the skills k  with nonzero Q-matrix entries ikq  (the skills required for this item) 

contribute to the probability of item i . If 1ikq =  holds, we have a total contribution of 

( )ik ik k ik kh q a aγ γ, =  for skill k  in Equation 4.  

The above choice is appropriate for Q-matrices with 0 1/ entries combined with various 

skill level choices. Skill levels such as {0 1}ka ∈ ,  or { 0 }ka m … … m∈ − , , , , + may be used with this 

definition of h  as long as the Q-matrix contains only 0 1/  entries.  

However, this choice of ()h does not work well with Q-matrices that have entries other 

than 0 1/ . This is particularly true if the γ  parameters as given in Equation 4 are to be estimated.  

In cases with integer or real valued Q-matrices, a useful choice is  

( ) ( )ik k ik kh q a min q a, = ,  (6) 

with {0 1 2 }q … m∈ , , , , as well as {0 1 2 }a … m∈ , , , , . This coincides with the definition in Equation 5 

if {0 1}q∈ , and {0 1}a∈ , but differs in cases using arbitrary skill levels a  or Q-matrix entries q .  

The rationale of this particular choice of the minimum of q  and a  is that the GDM may 

be used for skills assessment where the Q-matrix entries represent a sufficient level for skill k  

on item i . A higher skill level than ikq  will not increase the probability of solving item i , 

whereas a skill level lower than ikq  results in a lower probability of solving item i .2 
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Examples of Skill Level Definitions for Various Models 

Assume that the number of skill levels is 2kS =  and choose skill levels { 1 0 1 0}ka ∈ − . ,+ . , 

or alternatively { 0 5 0 5}ka ∈ − . ,+ . . Note that these skill levels are a priori defined constants and 

not model parameters. This setting can be easily generalized to polytomous, ordinal skills levels 

with the number of levels being 1kS m= +  and a determination of levels such as 

{(0 ) (1 ) ( )}ka c c … m c∈ − , − , , −  for some constant c ; an obvious choice is 2c m= / .  

Consider a case with just one dimension, for example, 1K = , and many levels, say, 

41kS = , with levels of ka  being equally spaced (a common, but not a necessary choice) say 

{ 4 0 4 0}ka …∈ − . , ,+ . . Here, the GDM mimics a unidimensional IRT model, namely the 

generalized partial credit model (GPCM; Muraki, 1992). 

A Logistic Version of the General Diagnostic Model 

The log linear formulation of the GDM as given in Equation 4 may be transformed to a 

form that is more familiar to researchers working with IRT models. The model as introduced 

above is equivalent to 

1

1 1

exp ( )
( )

1 exp ( )i

K
xi xik i ik kk

i i i m K
yi yik i ik ky k

h q a
P X x q a

h q a

β γ
β γ

β γ

=

= =

⎡ ⎤+ ,⎣ ⎦= , , , =
⎡ ⎤+ + ,⎣ ⎦

∑
∑ ∑

 (7) 

with k -dimensional skill profile 1( )Ka a a= ,..,  and with some necessary restrictions on the 

xikk
γ∑  and the xiβ∑  to identify the model. This defines the GDM as a general class of skill 

profile models. von Davier and Yamamoto (2004a) showed that this class of models already 

contains a compensatory version of the fusion model as well as many common IRT models as 

special cases. The parameters xiβ  as well as xikγ may be interpreted as threshold parameters and 

slope parameters, respectively.  

General Diagnostic Models for Partial Credit Data  

For a partial credit version of the GDM, choose ( )i ik k ik kh q a q a, =  together with Q-

matrices containing only 0 1/  entries. The resulting model, referred to as pGDM, contains many 

standard IRT models and their extensions to confirmatory MIRT models using Q-matrices. 
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Additionally, skill profile models such as multiple classification latent class models (Maris, 

1999), located latent class models (Formann, 1985), and a compensatory version of the fusion 

model (Hartz, Roussos, & Stout, 2002) are special cases for this subset of the GDM. For 

dichotomous and ordinal responses, this member of the GDMs, which may be viewed as a 

multivariate, discrete, GPCM, {0 1 2 }ix m∈ , , ,.., , is 

1

1 1

exp
( )

1 expi

K
xi ik ik kk

i i i m K
yi ik ik ky k

x q a
P X x a q

y q a

β γ
β γ

β γ

⎡ ⎤
⎢ ⎥
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⎢ ⎥
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+
= , , , =

+ +

∑
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 (8) 

with k  attributes (discrete latent traits) 1( )Ka a a= ,.., , and a dichotomous design Q-matrix 

( ) 1 1ik i I k K
q

= .. , = ..
. The ka  are discrete scores determined before estimation and can be chosen by the 

user. These scores are used to assign real numbers to the skill levels, for example, (0) 1 0a = − .  

and (1) 1 0a = + .  may be chosen for dichotomous skills. de la Torre and Douglas (2004) estimated 

the dichotomous version of this model, the linear logistic model (LLM; Maris, 1999; Hagenaars, 

1993), using MCMC methods. For ordinal skills with ks  levels, the ka  may be defined using 

( )a x x=  for 0 ( 1)kx … s= , , −  or (0) 2 ( 1) 2k k ka s … a s s= − / , , − = / . The parameters of the models as 

given in Equation 8 can be estimated for dichotomous and polytomous data, as well as for 

ordinal skills, using the EM algorithm.  

The pGDM can be extended also to a mixture distribution IRT model (von Davier & 

Rost, 2006), which allows the estimation of this class of diagnostic model in different latent 

classes without prespecifying which observation belongs to which class. This provides the ability 

to check whether the same kind of skill-by-item relations hold for all the subjects sampled from a 

particular population. A multiple group version of the pGDM can also be specified and estimated 

using the algorithm described below. This allows the estimation of diagnostic models, using the 

GDM framework, that contain partially missing grouping information (similar to the approach 

described in von Davier & Yamamoto, 2004c). For diagnostic models involving multiple 

observed groups or multiple unobserved populations (latent classes), parameter constraints can 

be specified that ensure scale linkages across these populations. Xu and von Davier (2006) 

presented an application of this approach to data from the National Assessment of Educational 

Progress (NAEP). NAEP is a government mandated program of monitoring educational progress 
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in the United States. Many view NAEP, with good reason, as the mother of international large 

scale educational survey assessments such as PISA—Programme for International Student 

Assessment , TIMSS—Trends in Mathematics and Science Study, and PIRLS—Progress in 

International Reading Literacy Study (PIRLS is known as IGLU in Germany). 

Estimation and Data Requirements 

An implementation of the EM algorithm based on a program for discrete mixture 

distribution IRT models (von Davier, 2001; von Davier & Yamamoto, 2004c) has been 

developed. This extended program, called mdltm, can be used to estimate parameters of the 

model as given in Equation 8. The program employs the EM algorithm and provides information 

about convergence, numbers of required iteration cycles, and descriptive measures of model-data 

fit and item fit. The program is controlled by a scripting language that is used to describe the data 

input format and the skill model (i.e., the item-skill combination as given in the Q-matrix, the 

number of skill levels, skill level scores ka  for each skill, and whether the γ  parameters are 

constrained across items or estimated freely).  

The software has been tested with samples of up to 200,000 examinees implementing a 

two-dimensional IRT model as well as with up to 50,000 examinees and an eight-dimensional 

dichotomous skill variable 1 8( )a … aθ = , , . Larger numbers of skills very likely will pose 

problems with identifiability, whether MCMC (in Bayes nets or other approaches) or MML 

methods are used, unless the number of items per skill variable is sufficiently large. The mdltm 

software allows imposing various types of constraints that may help to achieve identifiability in 

such cases. Currently, the following skill profile models can be estimated using the software:  

• multiple classification latent class models (Maris, 1999), diagnostic models with 

dichotomous skill variables, a compensatory Fusion/Arpeggio model (sometimes 

referred to as RUM; Hartz, Roussos, & Stout, 2002);  

• direct extensions of these diagnostic models to polytomous response data, and 

polytomous, ordinal skill levels (von Davier & Yamamoto, 2004a, 2004b; von 

Davier, 2005), without the need for replacement of ordinal skills by dichotomous sub 

skills with order constraints; 
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• unidimensional IRT models such as the RM (Rasch, 1960), the partial credit Rasch 

model (Masters, 1982), the 2PL IRT (Birnbaum, 1968) model, the generalized partial 

credit model (Muraki, 1992); and 

• other latent structure models, such as located latent class models (Forman 1985; 

Haberman, 1979); confirmatory multivariate IRT models; and discrete mixture IRT 

models (von Davier & Rost, 2006), such as polytomous mixed Rasch models (von 

Davier & Rost, 1995).  

The software can read ASCII data files in arbitrary format, and the scripting language 

used to control the software enables the user to specify which columns represent which variables. 

The software also handles weighted data, multiple group data (multiple populations), data 

missing by design (matrix samples) in response variables, and data missing at random in 

response variables as well as in grouping variables. 

The output is divided into a model parameter summary, an estimation summary, and a 

file containing the scores and attribute classifications of each examinee. This file also contains an 

accuracy percentage for each subscale as defined by the Q-matrix and the examinee ID code. 

Conclusions 

A variety of different diagnostic information is used in testing programs. In some 

programs, subscores or proficiency levels are used rather than diagnostic models. This is often 

the case for so-called legacy programs mainly created for providing unidimensional scores. For 

these programs, proficiency levels rather than skill profiles may seem more appropriate, since 

empirical comparisons often suggest that distinct patterns of response behaviors exist only in a 

hierarchical sense, namely that students at different levels on the ability scale have difficulties 

with different subdomains of the test.  

Currently, several testing programs use proficiency levels or rule-space-based methods as 

tools for providing the feedback from test outcomes to students and educators. An example is the 

PSAT. Other programs such as TOEFL® iBT and survey assessments such as NAEP are 

currently evaluating models for cognitive diagnosis as a means of providing more meaningful 

feedback about student (or group) performance on these tests or assessment instruments. 

Currently, researchers at ETS compare different approaches to cognitive diagnosis on the basis 

of data from operational test administrations of the TOEFL iBT testing program (Lee & Sawaki, 
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2006). Von Davier (2005) applied the GDM to TOEFL iBT field test data. Xu and von Davier 

(2006) studied parameter recovery of the GDM under sparse item matrix designs such as the 

ones used in large-scale educational assessments including NAEP and PISA. 

Using diagnostic models assumes that there are noticeable advantages in modeling 

examinee performance in a multivariate way. Testing programs have to find a balance between 

the two competing goals of assessing students’ performance in a summative way, while at the 

same time trying to help students discover their strengths and weaknesses. 

Models for cognitive diagnosis that fit into a common framework with IRT and latent 

class models help to determine whether additional model complexity will pay off in terms of 

greater accuracy in predicting student responses to the tasks or items in a cognitive assessment. 

More work needs to be done to derive suitable diagnostics for such complex models, thereby 

enabling researchers to pinpoint where models fail to predict student responses. Models for 

cognitive diagnosis expose the fact that we often may have very different ideas of how students 

interact with tasks. In this framework, those ideas are reflected in either unidimensional views of 

performance or in hypotheses of how a cognitive domain is structured in multidimensional 

mastery/nonmastery skills.  

How students’ skills or abilities are organized is a question that often may not be 

answered empirically, but the least statistical models can do is provide different ways to predict 

future performance. This will allow researchers to choose between more or less parsimonious 

data descriptions that fit the specific questions they wish to answer, given that the descriptions fit 

the observed data comparably well. This is not to say that we are free to choose, since many 

applications of test outcomes do not require multiple and potentially correlated measures. If, for 

example, the question is which students of a certain grade level should be assigned to broad 

remedial reading or writing classes, a simple classifier seems sufficient, since that does not 

require a complex model of five to seven interacting (unobserved) student variables that have to 

be combined in some way to decide whether a student needs special classes or not.  

On the other hand, multidimensional skill profiles may serve well in circumstances where 

enough information is available to measure each of the skills involved sufficiently well. This 

may be the case when data from multiple assessments are collected, each of which taps into one 

or more moderately correlated skills and when the goal of the assessment is equally complex, for 

example, putting together an individualized training program for each student.  
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Notes 
 

1 Note, however, that constraints across classes—skill patterns— may be used to decrease the 

actual number of required parameters to model the latent skill space. 

2Assuming fixed skill levels la  on the remaining skills l k≠  and a slope parameter 0ikγ > .  




